

MINISTÉRIO DA EDUCAÇÃO

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA

CURSO DE LICENCIATURA EM MATEMÁTICA - UNED PETRÓPOLIS

CÓDIGO DO CURSO				DISCIPLINA				
GMATPET				CÁLCULO DIFERENCIAL E INTEGRAL II				
CÓDIGO		PERÍODO		A	ANO		1ESTRE	PRÉ-REQUISITOS
5B		5		20	2026		1	4A - CÁLCULO DIFERENCIAL E
CRÉDITOS	A G-I				TOTAL DE AULAS NO SEMESTRE			INTEGRAL I
4	0	4	PRÁTICA 0		72			
ESTÁGIO					EXTENSÃO			
0 h/r					0 h/r			

EMENTA

Funções de várias variáveis. Limites, continuidade e diferenciabilidade. Derivadas parciais. Diferencial. Derivadas direcionais. Máximos e mínimos. Multiplicadores de Lagrange. Integrais múltiplas. Coordenadas polares, cilíndricas e esféricas. Mudança de variáveis em integrais múltiplas. Jacobianos. Aplicações das integrais múltiplas: áreas, volumes, centros de massa e momentos de inércia. Até 20% da carga horária de atividades computacionais.

BIBLIOGRAFIA

BIBLIOGRAFIA BÁSICA

PINTO, Diomara; MORGADO, Maria Cândida Ferreira. **Cálculo diferencial e integral de funções de várias variáveis**. 3. ed. Rio de Janeiro: Ed. da UFRJ, 2000.

STEWART, James. Cálculo volume 2. 7. ed. São Paulo: Cengage Learning, 2014.

ANTON, Howard, 1939-; BIVENS, Irl; DAVIS, Stephen. Cálculo: volume 2. 8.ed. Porto Alegre: Bookman, 2007.

BIBLIOGRAFIA COMPLEMENTAR

LEITHOLD, Louis. **O cálculo com geometria analítica** volume 2. 2. ed. São Paulo: Harper & Row do Brasil, 1982.

THOMAS, George B. Cálculo, v.2. 11. ed. São Paulo: Addison Wesley, 2009.

BORTOLOSSI, Humberto José. **Cálculo diferencial a várias variáveis**: uma introdução à teoria de otimização. 3. ed. Rio de Janeiro: Ed. PUC-RIO, 2002; São Paulo: Loyola.

GUIDORIZZI, Hamilton Luiz. **Um curso de cálculo**, volume 2. 5. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2012.

CRAIZER, Marcos; TAVARES, Geovan. **Cálculo integral a várias variáveis**. 2. ed. Rio de Janeiro: Ed. PUC-RIO, 2002; São Paulo: Loyola.

OBJETIVOS GERAIS

Tornar o aluno familiarizado com conceitos de limites, derivadas parciais e integração de funções de duas e três variávies, como também, seus principais métodos de cálculo e aplicações.

METODOLOGIA

A metodologia de ensino da disciplina será composta por:

- Aulas expositivas teóricas;
- Resolução de exercícios;
- Uso de softwares matemáticos.

CRITÉRIO DE AVALIAÇÃO

Os critérios de avaliação serão apresentados pelo docente da disciplina aos discentes no início do período letivo, podendo compreender, dentre outros, os seguintes métodos avaliativos:

- Avaliação dissertativa;
- Avaliação objetiva;
- Lista de exercício;
- Seminário;
- Trabalho prático computacional.

CONTEÚDO PROGRAMÁTICO

1. Derivadas parciais

- 1.1. Funções escalares de duas ou mais variáveis.
- 1.2. Superfícies quádricas
- 1.3. Noções de topologia
- 1.4. Limites e continuidade
- 1.5. Compacidade e o teorema de Weierstrass
- 1.6. Derivadas parciais
- 1.7. Diferenciabilidade, diferenciais e linearidade local
- 1.8. Regra da cadeia
- 1.9. Derivadas direcionais e o vetor gradiente
- 1.10. Planos tangentes e vetores normais
- 1.11. Máximos e mínimos de funções de duas variáveis
- 1.12. Multiplicadores de Lagrange

2. Integrais múltiplas

2.1. Integrais duplas

- 2.1.1. Integrais duplas sobre retângulos
- 2.1.2. Integrais iteradas; Mudança da ordem de integração; Teorema de Fubini
- 2.1.3. Integrais duplas sobre regiões gerais
- 2.1.4. Coordenadas polares
- 2.1.5. Integrais duplas em coordenadas polares
- 2.1.6. Aplicações das integrais duplas
- 2.2. Integrais triplas
 - 2.2.1. Integrais triplas sobre caixas retangulares
 - 2.2.2. Integrais iteradas; Mudança da ordem de integração; Teorema de Fubini
 - 2.2.3. Integrais triplas sobre regiões gerais
 - 2.2.4. Coordenadas cilíndricas e esféricas
 - 2.2.5. Integrais triplas em coordenadas cilíndricas e esféricas
 - 2.2.6. O teorema de mudança de variáveis. Jacobianos
- 2.3. Aplicações das integrais múltiplas: áreas, volumes, centros de massa e momentos de inércia